A Study Towards Optimal Data Layout for GPU Computing

Eddy Z. Zhang, Han Li and Xipeng Shen

Presenter: Mingzhou Zhou

The College of William and Mary

Problem Description

Irregular Memory References

- * A mem. transaction -- read/write a consecutive memory segment at once
- * A thread warp -- execute only when all data for all threads in the warp is ready
- * Random and complicated patterns
- * Example: thread warp size 4, mem. segment size 4. Access A[P[tid]]

Data Layout Transformation

* Complexity -- NP Completeness if not using any extra memory space or thread relocation

Lack of a study for optimal mapping, previous studies are based on simple heuristics

Duplication Approach

Transform data layout only.

- * Duplicate data objects.
- * Add space overhead: data size = # threads at a data reference.
- * Optimal number of memory transactions
- * Adaptive partial duplication [Zhang+:ASOLOS'11]

Padding Approach

Reorder Both Threads and Data

- * Step 1: Reorder data objects based on access frequencies.
- * Step 2: Reorder threads according to their data object order from Step 1.
- * Step 3: Put data objects into memory segments. Duplicate or pad dummy objects only when necessary.

Approximation with Confidence

Reorder Threads More Aggressively

- * Step 1: Group threads:
 - (a). those accessing a popular object (accesses >= warp size)
 - (b). those accessing alone object (1 access only)
 - (c). others
- * Step 2: Form warps for (a) and (b). Order their objects accordingly.
- * Step 3: Form warps for (c) and the remainders of (a) and (b). Order objects.

Analytical Bound

- * Optimal case: Total number of memory transactions = Total number of warps.
- * Upper bound: Optimal + R (lcl + #remainder threads) / W (warp size)

Conclusion

- Data layout transformation is critical for GPU
 - Two algorithms to achieve the optimal
 - duplication & padding (less space)
 - One algorithm to approx. with guarantees
- A first step to reveal the limit
- Future
 - Testing and refining them for practical usage

Questions?