

Rank Idle Time Prediction Driven Last-Level Cache Writeback

Zhe Wang, Samira M. Khan, Daniel A. Jiménez

Computer Science Department University of Texas at San Antonio

Memory Latency is Performance Bottleneck

- Memory wall
 - Microprocessor is faster than memory

- System performance is sensitive to memory read latency
- Write-Induced Interference [Lee et al. 2010]
 - Writes can delay the service of reads, degrade performance

Write-Induced Interference

Quantifying Write-Induced Interference

Without write-induced interference, system performance improves 23% on average

Traditional Writeback

Dirty cache blocks are sent to write buffer when evicted

- The problem
 - Clustering memory traffic : bursty reads with evicted writes
 - Writeback inefficiency : small size of write buffer

Contributions of This Paper

- Propose a technique that services write requests at the point that minimizes the delay caused to the following read requests
- Propose a low-overhead rank idle time predictor to predict long periods of idle time in memory ranks
- Propose a LLC writeback management policy that intelligently writes back bank-level parallelism writes during the long rank idle period
 - Balance the memory bandwidth
 - Isolate the service of memory read and write requests as much as possible

Outline

- Introduction
- Motivation
- Rank Idle Time Prediction Driven Last-Level Cache Writeback Technique.
 - -System Structure
 - -Rank Idle Time Predictor
- Evaluation
- Conclusion

Reducing Write-Induced Interference

- When to service write requests
 - Memory write requests should be serviced at the time that have minimal interference with read requests

- How to schedule write requests
 - Schedule high locality write requests
 - Large write scheduling space

Related Work: LLC Writeback Technique

- Eager Writeback [Lee et al. 2000]
 - Memory scheduling spaced is limited by the write buffer
 - Has no knowledge about how long the rank idle period will be last

- Virtual Write Queue [Stuecheli et al. 2010]
 - Requires specific memory address mapping scheme
 - Has no knowledge about how long the rank idle period will be last

Quantifying Rank Idle Time

Ranks are Idle 38% of the time on average

Rank Idle Time Prediction Driven LLC Writeback

Insight: Allow writes to be serviced during long rank idle periods

- Use a predictor to predict long rank idle period once a rank starts to become idle
- Scheduled write requests are generated from LLC and sent to DRAM for service during the predicted long rank idle period
 - Redistribute the write requests into long rank idle period
 - Isolate the service of memory read and write requests as much as possible

System Structure

Rank Idle Time Predictor

Two-Level Predictor

Second Level Predictor

 Based on the observation that if an instruction PC leads to long rank idle period, then there is a high probability that the next time this instruction is reached it will also lead to a long rank idle period

Rank Idle Time Predictor

Evaluation Methodology

- Simulator
 - MARSSx86 [Patel et al. 2011] +DRAMSim2 [Rosenfeld et al. 2011]
- Execution Core
 - out-of-order, 8-core processor
- Caches
 - 64KB L1 I + D caches, 2-cycle
 - 16MB 16 way set associative LLC, 14-cycle
- DRAM System
 - DDR3 1600MHZ
 - 2 channels, 2/4 rank per channel, 8 banks per rank
- CMP Workloads
 - SPEC CPU2006 benchmarks
 - Six mixes of SPEC CPU2006 benchmarks for 8-core processor

Performance Evaluation

It improves performance of eight benchmarks by at least 10% and delivers an average speedup of 10.5% with two-rank configuration and 10.1% with four-rank configuration.

Prediction Evaluation

False positive rates for the first-level and second-level predictors are 8.5% and 14.7% on average

Read Latency Evaluation

The technique reduces the read latency on average by 12.7% with two-rank configuration and 14.8% with four-rank configuration

Storage Overhead

	Overhead
Two-level rank idle time predictor	4KB=2bits * 8096entries*2
Cache Cleaner	2K bytes
Total	18KB for 2-rank / 34 KB for 4-rank
Percentage of LLC Capacity	~0.3%

Conclusion

- Write-induced interference causes significant performance degradation.
- Proposed a rank idle time predictor that predicts the long rank idle time.
- Proposed a LLC writeback management policy that intelligently writes back bank-level parallelism writes during the long rank idle period
 - Balance the memory bandwidth
 - Isolate the service of memory read and write requests as much as possible

Thank You! Question?