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Motivation

* CPU clock rates are not increasing
* Need for other ways to increase performance
* Parallelization is a promising option
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* Very good potential for parallelization in
hardware

e Less good potential for parallelization in
software in practice

* Parallel programs are inherently complex and
time consuming

* Automatic parallelization is easy to use but
had little success in object oriented
programming
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 An immutable object does not change its
attributes

— 1/O operations count as mutations of object’s state
* A pure object is immutable and can only
transitively reach other immutable objects
* |nsight:
— A pure object can not change global state

— Method invocations on pure objects are called pure
methods and can run in parallel
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seies saies
ofe® Pure object analysis ofe®

* Existing automatic parallelization — based on
something like purity analysis — is mostly done
statically, and has not succeeded for OOP

* My hypothesis:
— Analysis of OOP has to regard too many
dependencies if done conservatively.

— Optimistic, dynamic analysis does not over-
approximate dependencies and is more precise

— Allows for better parallelization



Basic idea
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Use a garbage collector to guess pure objects
(optimistic, dynamic analysis)
— Pure for some time, not necessarily always

Roll back if guess was wrong using careful write-
protection

ldea: merge 3 algorithms

— Classic GC algorithm

— Tarjan’s algorithm

— Purity detection algorithm
Test of the idea:

— Proof of concept implementation for evaluation
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e Strongly connected components (SCC)

— partitioning of graph in min set of nodes so all
nodes can reach every other node in its set

* Objects and references, cells and pointers,
nodes and edges

* Cell properties: mutable, dirty, pure
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* Condense object graph to SCCs
— directed acyclic graph
— Modified Tarjan’s algorithm to find SCCs
— Need a linear O(|E|+]|V|) algorithm

* Traverse the condensed graph in DFS order,

propagate “dirty” property up towards roots
from mutable nodes

* Nodes that are not dirty are guessed to be
pure
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Garbage collection
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* Replicating garbage collector
— Variant of copying GC
— Mutators access from-space
— Collector synchronizes from- and to-space during GC
* Why replicating GC
— Allows for pointer reversal in to-space (required for analysis)
— Traverse DFS order, needed for merging Tarjan’s algorithm with GC
— Replicating live objects (between semi-spaces)
e Parallel garbage collection
— Fast, low mutator delay due to GC
— Needs a mutation log for synchronization (thread-local)
— Write barrier for all fields, not only pointers

— Exploited by analysis — guess mutable objects (major reason why
replicating GC algorithm was chosen
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e Pointer reversal vs stack-based traversal

— Pointer reversal — no stack overflow, impossible
for some cells for technical reasons.

— Stack — faster in some VMs because of technical
reasons, lower memory footprint
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e Stack (for determining nodes in same SCC)
— Removed, flag bit used instead

* |ndex field (indicating DFS order)
— Removed, memory address of cell is in DFS order
with replicating GC
* Lowest field (first node in SCC DFS order)

— Removed; shared with replica pointer needed by
replicating GC



Memory allocation

Contiguous heap
Contiguous memory allocation
Thread local allocation buffers

Small synchronization times (no locks)

— Soft real-time GC (not going to prove hard real-
time!ll)

Allocation speed fast
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* Optimistic purity analysis
— Replicating garbage collector
— Merged with Tarjan’s algorithm

— Purity analysis on the way

 Low overhead in time and memory
— Total 1 DFS pass O(|V|+]|E]|)

— Overhead of analysis (purity analysis + Tarjan’s)
insignificant

— 1 pointer word memory overhead per cell using smart
optimizations applicable only to replicating GC
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Proof of concept in C (with runtime-system)
GCBench

Homegrown parallelization benchmark using
our GC

Claims are toned down in this paper; major
contribution is the concept



GCBench
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GC Execution time Collector 14000
overhead 12000
Boehm 2,555 ms 774 ms (30 %) 10000
Our GC 1,781 ms 263 ms (13 %) 8000
Boehm (inc) 12,255 ms 10,474 ms (86 6000
%) 4000
Manual 3,083 ms N/A 2000 I B I

Boehm Our GC Boehm Manual
(inc)
M Execution time Collection time

e Compared to Boehm’s STW collector
e Heap size: 512 MB

e Boehm’s collector overhead measured as difference between Boehm’s STW and
mutator time of our GC

e 257 ms collector overhead without analysis (almost the same)

e Limitation: Suboptimal to compare conservative mark & sweep against parallel
replicating GC



Parallelization bench
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* Traverse tree BFS order, mutations in all nodes except leaves
* Leaves multiply matrices together
e Different runs with different tree sizes

* Occasionally mutates state if derivative deviates due to lacking floating
point precision (which static analysis can not find easily)

* Dynamically parallelizes and rolls back if wrong
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* Implemented GC and purity analysis

* Performance of proof of concept GC is
comparable to Boehm’s GC

* Optimistic purity analysis does not take extra
time and is directly accessible for
parallelization

e Scales well with multiple threads



Future work

Detecting independent sub-graph pairs
Generational garbage collection

JIT parallelization transformations using
analysis

Integrate to VM for better evaluation

In general let runtime system exploit GCs for
more than collecting garbage



Questions?




