Linn€universitetet Linn€universitetet

Analysis of pure methods using
Garbage Collection

Authors:
Erik Osterlund and Welf Lowe

Linnaeus University, Sweden



Motivation

* CPU clock rates are not increasing
* Need for other ways to increase performance
* Parallelization is a promising option



Motivation (cont.) ;3)3:°

Linn€universitetet

* Very good potential for parallelization in
hardware

e Less good potential for parallelization in
software in practice

* Parallel programs are inherently complex and
time consuming

* Automatic parallelization is easy to use but
had little success in object oriented
programming



Contents

Basic idea and notions

Pure object analysis

Garbage collection and traversal strategies
Final solution

Evaluation

Conclusion and Future work



;-']3:' Pure objects ;3)3:°

Linn€universitetet Linn€universitetet

 An immutable object does not change its
attributes

— 1/O operations count as mutations of object’s state
* A pure object is immutable and can only
transitively reach other immutable objects
* |nsight:
— A pure object can not change global state

— Method invocations on pure objects are called pure
methods and can run in parallel



Linn€universitetet

Key

O

Mutable object Immutable object

O

Immutable and
pure object

Linn€universitetet



seies saies
ofe® Pure object analysis ofe®

* Existing automatic parallelization — based on
something like purity analysis — is mostly done
statically, and has not succeeded for OOP

* My hypothesis:
— Analysis of OOP has to regard too many
dependencies if done conservatively.

— Optimistic, dynamic analysis does not over-
approximate dependencies and is more precise

— Allows for better parallelization



Basic idea

Linn€universitetet Linn€universitetet

Use a garbage collector to guess pure objects
(optimistic, dynamic analysis)
— Pure for some time, not necessarily always

Roll back if guess was wrong using careful write-
protection

ldea: merge 3 algorithms

— Classic GC algorithm

— Tarjan’s algorithm

— Purity detection algorithm
Test of the idea:

— Proof of concept implementation for evaluation



Notions ;3)3:°

Linn€universitetet

e Strongly connected components (SCC)

— partitioning of graph in min set of nodes so all
nodes can reach every other node in its set

* Objects and references, cells and pointers,
nodes and edges

* Cell properties: mutable, dirty, pure



;-')3:' Pure object analysis ;3)3:°

Linn€universitetet

* Condense object graph to SCCs
— directed acyclic graph
— Modified Tarjan’s algorithm to find SCCs
— Need a linear O(|E|+]|V|) algorithm

* Traverse the condensed graph in DFS order,

propagate “dirty” property up towards roots
from mutable nodes

* Nodes that are not dirty are guessed to be
pure

Linn€universitetet



Garbage collection

Linn€universitetet Linn€universitetet

* Replicating garbage collector
— Variant of copying GC
— Mutators access from-space
— Collector synchronizes from- and to-space during GC
* Why replicating GC
— Allows for pointer reversal in to-space (required for analysis)
— Traverse DFS order, needed for merging Tarjan’s algorithm with GC
— Replicating live objects (between semi-spaces)
e Parallel garbage collection
— Fast, low mutator delay due to GC
— Needs a mutation log for synchronization (thread-local)
— Write barrier for all fields, not only pointers

— Exploited by analysis — guess mutable objects (major reason why
replicating GC algorithm was chosen



Replicating GC

Garbage
Collector

From-space To-space
Stackandglobal| | /" Noco-----7TT1T T »~
memory Q Q
N T »
/ B SRS IS —
/ ‘ﬂ Mutation
AN Lo
root 9
root ﬁ
\\
RS -
Key
Q ‘ —_— - > root
Live cell Dead cell Reference Replica Stack pointer




25fse. 5,
%ole* Traversal strategies %ole*

Linn€universitetet Linn€universitetet

e Pointer reversal vs stack-based traversal

— Pointer reversal — no stack overflow, impossible
for some cells for technical reasons.

— Stack — faster in some VMs because of technical
reasons, lower memory footprint



;-']3:' Tarjan modifications ;3)3‘

Linn€universitetet Linn€universitetet

e Stack (for determining nodes in same SCC)
— Removed, flag bit used instead

* |ndex field (indicating DFS order)
— Removed, memory address of cell is in DFS order
with replicating GC
* Lowest field (first node in SCC DFS order)

— Removed; shared with replica pointer needed by
replicating GC



Memory allocation

Contiguous heap
Contiguous memory allocation
Thread local allocation buffers

Small synchronization times (no locks)

— Soft real-time GC (not going to prove hard real-
time!ll)

Allocation speed fast



. . ;;.‘2':.
Final solution ole

* Optimistic purity analysis
— Replicating garbage collector
— Merged with Tarjan’s algorithm

— Purity analysis on the way

 Low overhead in time and memory
— Total 1 DFS pass O(|V|+]|E]|)

— Overhead of analysis (purity analysis + Tarjan’s)
insignificant

— 1 pointer word memory overhead per cell using smart
optimizations applicable only to replicating GC



. ;;:2':-
Evaluation ole

Linn€universitetet

Proof of concept in C (with runtime-system)
GCBench

Homegrown parallelization benchmark using
our GC

Claims are toned down in this paper; major
contribution is the concept



GCBench

Linneéuniversitetet Linneuniversitetet
GC Execution time Collector 14000
overhead 12000
Boehm 2,555 ms 774 ms (30 %) 10000
Our GC 1,781 ms 263 ms (13 %) 8000
Boehm (inc) 12,255 ms 10,474 ms (86 6000
%) 4000
Manual 3,083 ms N/A 2000 I B I

Boehm Our GC Boehm Manual
(inc)
M Execution time Collection time

e Compared to Boehm’s STW collector
e Heap size: 512 MB

e Boehm’s collector overhead measured as difference between Boehm’s STW and
mutator time of our GC

e 257 ms collector overhead without analysis (almost the same)

e Limitation: Suboptimal to compare conservative mark & sweep against parallel
replicating GC



Parallelization bench

Linn€universitetet 25 Linn€universitetet

20 ]
15
10

5 I

O d e
1 2 3 4

USequential execution B Optimal analysis

N Qur analysis B Parallel execution
@ Garbage collection

* Traverse tree BFS order, mutations in all nodes except leaves
* Leaves multiply matrices together
e Different runs with different tree sizes

* Occasionally mutates state if derivative deviates due to lacking floating
point precision (which static analysis can not find easily)

* Dynamically parallelizes and rolls back if wrong



;-')3:' Conclusion ;3)3:°

Linn€universitetet Linn€universitetet

* Implemented GC and purity analysis

* Performance of proof of concept GC is
comparable to Boehm’s GC

* Optimistic purity analysis does not take extra
time and is directly accessible for
parallelization

e Scales well with multiple threads



Future work

Detecting independent sub-graph pairs
Generational garbage collection

JIT parallelization transformations using
analysis

Integrate to VM for better evaluation

In general let runtime system exploit GCs for
more than collecting garbage



Questions?




